Bezmaksas tiešsaistes rīks, kas palīdz aprēķināt attālumu starp diviem punktiem divdimensiju koordinātu sistēmā. Abi punkti ir norādīti pēc to koordinātām, kas ir norādītas kā (x1, y1) un (x2, y2).
Attālums starp diviem punktiem divdimensiju koordinātu sistēmā ir tās taisnes garums, kas savieno abus punktus. To aprēķina, izmantojot Pitagora teorēmu, kas nosaka, ka taisnleņķa trijstūrī hipotenūzas kvadrāts (garākā mala) ir vienāds ar pārējo divu malu kvadrātu summu.
Attālums starp diviem punktiem var būt aprēķina, izmantojot šādu formulu:
attālums = √((x2 - x1)^2 + (y2 - y1)^2)
kur √ apzīmē kvadrātsaknes funkciju.
Pieņemsim, ka mēs vēlamies atrast attālums starp punktiem (3, 4) un (8, 12).
Izmantojot formulu, attālums = √((8 - 3)^2 + (12 - 4)^2) ≈ 9,43
Tāpēc attālums starp diviem punktiem (3, 4) un (8, 12) ir aptuveni 9,43.